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SECTION 1

INTRODUCTION

This report is a major extension and a partial revision of
Volume l4b [My-75] which pertained only to the midlatitude density
profiles of selected atmospheric species. The current report re-
moves (where feasible) the midlatitude restriction and includes
density profiles for additional species relevant directly or in-
directly to ROSCOE-IR. Table 1-1 provides a guide to the species for

which density profiles are provided in Volumes l4b and léc.

In the current volume, profiles for selected atmospheric
species have been constructed on the basis of observed and calculated
ambient densities from ground level to several hundred kilometers al-
titude. The goal in developing these profiles was to provide values
of the densities sufficiently accurate for use in infrared trans-

mission calculations as well as for chemical calculations requiring
ambient densities.

For some of the species (especially water and ozone ard, to
a lesser extent, nitric oxide and nitrogen atoms) the profiles are
quite complex and mav have dependencies on (in addition to altitude)
geographic position, latitude, local apparent time, fraction of sea-
son-year, and solar decimetric flux. These more complex profiles
are sometimes referred to as models.

The models and profiles are derived independently for the
} various species and thus consistency cannot be assured. This problem

is quite complex and is definitely outside the scope of this report.

The units of measure employed in the models and profiles

described below reflect the units generally found in the literature

for individual species. No attempt has been made to use a consistent
! set of units throughout this report. Conversion to consistent units
‘ is performed in the computer-coded version of these profiles and is
documented in Volume l4a-1 [HS-78].
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Table 1-1. Guide to species profiles in Volumes 14b and l4c .

Profile in
Indicated Section of

Species Vol. l4b Vol. l4c

Comment

0 2
o(*n) 9
1
0,(ala) 3
0, 4 3
N 6 12
N(2D) 13
NO 5 11
NOZ
N,0 10
co, 8
co 5
CH4 4
Hy0 9 2
OH 6
HO, 7
H 8

Generalization of overall atmo-
spheric model below 120-km altitude
has led to a slightly revised O
profile.

Latitudinal and seasonal dependence
now included for z < 55 km. For

z > 55 km, diurnal dependence from
Vol. 14b obtains.

Revised and extended.

Revised and extended.

Geographical and seasonal depend-
ence now included for z < 5 km;
other revisions for z < 70 km. For
z > 70 km, data from Vol. 1l4b
obtains.

8 For He and N(ZP) see Sections 2 and 4, respectively, of

Volume 1lé4a-1.




SECTION 2

A MODEL FOR WATER PROFILES

2-1 INTRODUCTION

For ROSCOE-IR a more accurate and therefore detailed model
of the atmospheric H,0 content is required than is present in ROSCOE-
Radar [My-75, HS-75]. Greater accuracy is required for IR transmis-
sion calculations and models involving water vapor ccndensation phenom-
ena. Thus, a careful modeling of the H20 content at altitudes below
50 km is required. Also, the calculations of the H,0 chemistry at
these altitudes benefit from the improved model. Thus, it becomes
necessary to account for the geographical and seasonal variations in
H,0 content at altitudes below about 30 km. These variations can be
large; in the model presented below, they amount to factors as large
as 30 and 10, respectively.

The model presented here yields H,0 profiles as a function
of altitude and of time of year for each of variously selected geo-
graphical areas near the earth's surface treated as quasi-homogeneous
moisture regions. The influence of the tropical troposphere on the
lower stratosphere is modeled. The data base for the model consists
of (a) NASA data [Jo-75c, SG-71, SF-72b] for altitudes up to 5 km,
(b) data from the review by Harries [Ha-76e] for altitudes between 14
and 45 km, and (c¢) data from the review by Myers [My-75] for altitudes
above 70 km. Data for altitudes between 5 and 14 km and between 45
and 70 km were obtained by interpolation using the data base and
features of the model.

2-2 GENERAL DESCRIPTION OF THE MODEL

The model is formulated in terms of modules which are char-
acterized (a) near the earth's surface by ranges of latitude and
longitude and quasi-homogeneous moisture regions within the ranges and
(b) at higher altitudes by spherical shells representing transition
altitudes of the model. The latitude ranges (in degrees) are 0 to 30,

11




30" to 60, and 60+ to 90; the quasi-homogeneous moisture regions are de-
scribed as dry, intermediate, or wet. The moisture regions apply to the
corresponding ranges of latitude in both the northern and southern hemi-
spheres according to the prescription developed below when the appropri-
ate seasonal dependence is taken into account. The spherical shells
extend from the earth's surface to 5 km, 5+ to 14 km, and above 14 km.
Use of the shells permits a description of the HZO altitude profiles
based on the available data and model profiles.

The NASA data [Jo-75c] represent the results of measurements
only up to 5 km; between 5 and 25 km, extrapolations of the data are made
[SG-71, SF-72b] which, however, are not used in the present model. The
NASA data provide a seasonal variation in the H,0 densities. In addi-
tion, the NASA data are subdivided [SF-72b] into 45 homogeneous moisture
regions to account for geographical variations. In the present model,
this number of regions is reduced to six (quasi-homogeneous regions) by
averaging over subsets of similar moisture regions. The errors intro-
duced by the averaging are generally less than 50 percent (see Section
2-3). The NASA data are available only in tabulated form [Jo-75c], but
with the treatment of the data in the present model, all the data of
the six moisture regions have been represented surprisingly accurately
by a simple transcendental function. This formulation accounts for the
altitude, seasonal, and geographical dependence of the selected H20
density data with an average error of less than six percent.

Between 5 and 14 km, there are insufficient data and in the
model the necessary data are generated by logarithmic interpolation of
the values of the mass-mixing ratios at 5 and 14 km.

Between 14 and 45 km, the mean altitude profile of che H,0
mass-mixing ratio is based on a smoothed-curve representatiou of the
mean, midlatitude vertical distribution derived by Harries [Ha-76e]
and on a latitude dependence which is constant between about 30 anu 90

degrees latitude but rises in the O-to about 30-degree latitude band to

account for the influence of the high tropopause in the tropical
latitudes.

3 The seasonal dependence in the model extends from ground r
level to 20 km; the amplitude of the dependence declines montonically

to a negligible value at 20 km. The modeling of the seasonal depen-

dence is in accord with the NASA data [Jo-75c] between 0 and 5 km and

12




in accord with the data of Mastenbrook [Ma-7lc] between 14 and 20 km.
An altitude-dependent phase shift in the seasonal variation of the
water vapor mixing ratio is incorporated in the model; this phase
shift becomes significant at altitudes above approximately 14 km.

The phase shift is assumed to be linearly dependent on latitude (in

the absence of relevant data). For the lower stratosphere, the sea-
sonal dependence and its phase shift may be viewed [Ha-76e] as the

. result of control of water admission to the lower stratosphere by the
tropical tropopause [also see Ne-77].

Between 45 and 70 km, the mixing ratio data are generated
by interpolation based on the altitude profiles ending at 45 km and
beginning at 70 km.

Above 70 km, the mixing ratios are taken from a review by
Myers [My-75]; these ratios are based on calculations according to
various models [Hu-73a, TB-72, GZ-72a, HS-74a] between 70 and 120 km
and on an assumed exponential decrease at altitudes above 120 km.

2-3 WATER DENSITIES UP TO 5 KM

The water densities up to 5 km for six moisture regions were
derived from NASA data [Jo-75c¢] and are presented in Tables 2-1, 2-2,
and 2-3. The moisture regions are characterized as wet, dry, or in-
termediate. The latitude and longitude bounds for the moisture
regions are depicted in Figure 2-1., 1In Table 2-4, the identification
numbers of the 45 homogeneous moisture regions used in obtaining the
data of Tables 2-1, 2-2, and 2-3 are listed together with the average
maximum errors resulting from the averaging procedure.

The data of Tables 2-1, 2-2, and 2-3 were fit with the
. following function:

[n[HZO] = A(a,z) sin(760f - 120) + B(a)
. - (0.4845 + 2.33 x 1074 L)z
b - (0.117 + 5.91 x 1072 L)e % & (1)
) gy
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Table 2-2b. Geographic regions for 30° to 60° latitude
range.
Region Latitude Bounds Longitude Bounds
Northern temperate, dry 50 N <L <60N 30 E< ¢ <110 E,
247 E < ¢ < 255 E
Horthern temperate, dry 40 N <L < 60N 110 E < ¢ < 135 E
Northern temperate, dry 45 N < L < 60 N 255 E < ¢ < 303 E
Northern temperate, inter. 45 N < L < 50N 247 E < ¢ < 255 E
Northern temperate, inter. 40 N < L < 45 N 255 E < ¢ < 303 E
Northern temperate, inter. 40 N < L < 60N 303 E < ¢ < 30 E, f
135 E < ¢ < 230 &
Northern temperate, inter. 40 N < L < 50 N 30 E < ¢ < 110 E,
- 230 E < ¢ < 235 E
Northern temperate, inter. 35 N<L< 50N 235 E < ¢ < 240 E
Northern temperate, wet 30 N <L < 4N 255 E < ¢ < 235 E
Northern temperate, wet 30N <L <3N 235 E < ¢ < 240 E
Northern temperate, wet 50 N <L < 60N 230 E < ¢ < 240 E
Northern temperate, wet 30 N<L<60N 240 E < ¢ < 247 E
Northern temperate, wet 30 N <L < 45N 247 E < ¢ < 255 E
Southern temperate, inter. 35 S < L < 60 S Unrestricted
Southern temperate, wet 30 S <L <358 Unrestricted
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Table 2-3a. Water mass-density (g/ms) profile data
(monthly mean) for 60° to 90° north
latitude range.

Dry Region (a = 6)

Month z=0 1 2 3 4 5
1 0.77 0.71 0.51 0.42 0.25 0.16
2 0.73 0.70 0.51 0.42 0.25 0.16
3 0.89 0.86 0.60 0.44 0.26 0.15
4 1.52 1.32 0.92 0.61 0.36 0.21
5 3.01 2.32 1.60 1.01 0.59 0.33
6 5.00 3.97 2.71 1.70 1.00 0.57
7 6.40 5.30 3.59 2.29 1.38 0.81
8 6.21 4.98 3.28 2.06 1.23 0.72
9 4.50 3.39 2.22 1.36 0.80 0.46
10 2.66 1.96 1.31 0.83 0.48 0.27
11 1.43 1.12 0.77 0.56 0.33 0.19
12 0.91 0.81 0.56 0.45 0.27 0.15

Table 2-3b. Geographic regions for 60° to 90°
latitude range.

Region Latitude Bounds Longitude Bounds
Arctic 60 N <L <90 N Unrestricted
Antarctic 60 S <L <90 S Unrestricted




P ancam acctosee o na o o . . i — ] - 0 g P e ! Fe, S v - . Vs

‘19pow @7T3yoxd a93EBM UT Suotrfax
2an3jsTow 9pn3ITITE W-G 03 -0 JO suorieoo] orydea8osn -1-7 2and1g

SG/. + + SS¢L
(9) AHQ
S09 ; —+ 4 } —— + - — } S09
(¥) ILVIGIWHILN)
i _ g } 1 o n 3 1 0 “
sog — —_— N — H SoE
N (g) 1Im _E >¢m
(1) 13IM
0t + + + + + + + + + + + +o0 ©
(2) A¥Q () 13m \E 13M

NOE t —+ + —+ — +—— } } } $ NOE .
_L P L ) 1 1 y 1 | 1 ~
L] L T Rl ‘u\ [MJ T 1 ] Ll Al Avv .
+— (¥) 3LVIQIWYILNI (¥) ILVIQIWHILNI w
(5) ANQ (S) AHQ (S) AHO |
NO9 } | + + ~+ + + 4 + + NO9 !
i
(9) AHQ {
Nz L + + + + + + + + + + + 4 Nst w
06 09 o€ 0 0SE O00E 02 OvZ OLZ O08L OSL Ozl 06 \
3ANL1I9NOT 1Sv3 , w
m
¢




Table 2-4. Data on reduction of number of moisture regions.

Our Model
Moisture Regions
o Latitude Moisture NASA Average
Number Range Region Moisture Regions Max. Error
1 Wet 16-22, 35, 36 30%
0°-30°
2 Dry 23, 26, 27, 30-33, 407
42, 45
3 ‘I ‘ Wet 10-15, 27 30%
4 -30°-60° l Inter. 6-9 30%
5 s Dry 4, 5 15%
6 60°-90° Dry 2 -
a

The NASA moisture

" AR OO MPIPImA Y A e

regions are numbered according to SF-72b.
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where [HZO] is the water mass density (g/m3); A(a,z), the amplitude,
which is dependent on the moisture region (u) and the altitude z(km),
is given by

A(a,z) = al(a) + as(a)z + a3(a)22 ; (2)

f is the fraction of the year, being 0 on January 1 and 1.0 on

December 31 (in northern hemisphere); B(a) is a coefficient for the

mean value of Rn[Hzo]; L is the latitude in degrees; § = 1 when
o,ady

a = adry (where adry =2, 5, or 6 for the dry regions) ang gero other-

wise.* The values of the coefficients a), a,, as, and B(a) are listed

in Table 2-5. With the data of Table 2-5 and Equation (1), the data in

Tables 2-1, 2-2, and 2-3 can be represented with an average error of

less than 6 percent and a maximum error of less than 26 percent.

S e S g )

2-4 WATER DENSITIES BETWEEN 5 AND 14 KM

Water density data between 5 and 14 km are determined by in-
terpolation based on the mass-mixing ratios (mg, expressed in parts
per million by mass, ppmm) at 5 and 14 km according to the equation:

1h - 2 mp(5,a,f,L)
JLn[mR(Z,ct,f.L)] = —g— in mRZU,f,m—

+ Qn[mR(lA,f,L)], 5 < z(km) < 14, (3a)
Here, mR(z,a,f,L) is the mass-mixing ratio at altitude z and latitude

L in moisture region o at fractional time of year f. The mass-mixing
ratio and water mass density are related by the equation

mp(z,a,f,L) = [H,0(z,a,f,L)]/0(2), ppmm (3b)

.,

In the formulative stage of Equation (1), the coefficients of z and
e-Z were found to be smooth functions of the mean latitude for each
range. This dependence was generalized to that of Equation (1); thus
the homogeneous moisture regions became quasi-homogeneous moisture
regions.

20
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Table 2-5. Parameters for fit of water data between 0 and
5 km (per Equations (1) and (2)).

Our Model Coefficients for
Moisture Regions A(a,z)
o Latitude Moisture
Number Range Region a4 a2 a3 B(a)
1 } { Wet 0.1485 0.0372 0.0 2.854 i
p°-30°
2 Dry 0.3253 0.0069 0.0052 2.537
3 Wet 0.3107 0.0253 0.0 2,467
4 30°-60° Inter. 0.4080 0.0337 0.0 2.024
5 Dry 1.0 0.1002 0.0120 1.852
6 60° -90° Dry 1.139 0.1062 0.0086 1.289

0‘.
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where p(z) is the mass density (in g/cm3) of dry air at z km. (Note

that we follow literature usage by expressing water vapor density '
units of g/m3; however, we follow our general code usage by express-

ing air density in units of g/cm3.) With the use of Equation (1) to
determine [H20(5,a,f,L)], mR(S,a,f,L) is determined from Equation
(3b); with the use of Equation (3a) to determine mR(z,a,f,L),
[HZO(z,a,f,L)] is determined from Equation (3b) for the range

5 < z(km) < l4. The determination of mR(lA,f,L) in Equation (3a) is
described below.

2-5 WATER DENSITIES AT 14 KM AND ABOVE

Consider first the mean mass-mixing ratio (in ppmm) from 14
to 45 km. The mixing ratio data have been reviewed by Harries
[Ha-76e] who recommends a mean, midlatitude vertical distribution be-
tween about 14 and 50 km. In applying this distribution to the pre-
sent model, we smooth the distribution and terminate it at 45 km;
above 45 km, the distribution of Harries [Ha-76e] appears to decline
more rapidly than indicated by calculations (see below). This dis-
tribution is then applied over the latitude range between 0° and 90°
by (a) assuming no latitude dependence between about 33Y and 907,

(b) increasing the mass-mixing ratio by a factor of four in the
latitude range from 0° to about 23° to account for the high tropical
tropopause, and (c¢) providing a transition range between about 23° to

about 33°. The mean vertical distribution can be represented by

-0.221 =z
e

-0.0226 z , 30.9
0 44 (T=28) ° (%)

+
1 +e

Ln[mR(z,L)] = 0.0619 z

where L is the latitude. Equation (4) applies from 14 to 45 km and,
for midlatitudes, represents the mean values of Harries [Ha-76e] with
an error that is negligible compared with the uncertainties of the

observational data.

To account for the seasonal dependence up to 20 km, the mean

Py
" s

value is augmented by a seasonally-dependent quantity; the mass-mixing

ratio is thus given by

R e
. ”

E

- v ]
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) ) 0,448z ) 6.92L
un[mR(Z,f,L)] = {l + 323e sin{360f 1——+—e_—6~m - 105]}
-0.221z
-0.0226z , 30.9e " {
x ¢ 0.0619ze + &
{ 1+ eO.QL(L—ZS)‘
14 < z(km) < 45 . (5)

Equation (5) incorporates the phase shift in seasonal dependence and
the decline in amplitude to negligible values at 20 km; these aspects
are illustrated in Figure 2-2 for L = 39°, The arrows along the f-
axis indicate the time of the maxima derived from observations [Ma-
71lc] and the amplitudes are indicated on the right-hand side of the
figure.

It is to be understood that Equations (1) and (5) strictly
apply only to the northern hemisphere. However, we will apply
Equations (1) and (5) to the southern hemisphere by making the
simplifying assumption of season reversal. Thus, if L < 0, we set

1]

£ ow £o1q * 05 ; (6a)

then, if fnew > 1.0, set

h
|

£2 - 1.0 . (6b)

new new

Use only 'L} in Equations (1) and (5).

Above 50 km, reliance has to be placed on water mixing
ratios derived from calculations. These calculations have been pre-
viously reviewed [My-75] and a profile selected. To obtain a smooth
transition between the latter and the profile presented above, values
of the mass-mixing ratio between 45 and 70 km are selected by inter-
polation, shown in Figure 2-3; the data are given in Table 2-6. In

Figure 2-3, the spread in the profiles between 20 and 30 km corres-

ponds to the transition to increased mass-mixing ratios in the tropical
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Table 2-6. Selected values of water mass-mixing ratio
for altitudes z > 20 km.

z (km) ppmm Ref. Comment z (km) ppmm Ref. Comment
20 2.2 Ha-76e a 75 1.25 My=-75 c
25 2.39 80 0.98

* 30 2.5 85 0.76
35 2.67 90 0.46
40 2.74 * 95 0.21
45 2.71 y 100 0.066
50 2.6 b 105 0.018
55 2.36 110 0.0075 Y ’
60 2.1 115 0.0053 b
65 1.8 120 0.0040 My-75 c
70 1.51 My-75 c >120 d

a

Values in the 20- to 40-km range are retained for the
possible benefit of the user who wants to exercise an
optional input.

Interpolation.

Densities from My-75 were converted to ppmm by using mass
: densities of air taken from US-66.

4 mp = mp(120) exp[-0.0575(2-120)], z > 120 k.

.
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regions (L < 23°) as discussed above. Table 2-6 gives the mass-mixing
ratios up to 120 km and provides a formula for calculating the mixing
ratios above 120-km altitude. Between 45 and 120 km, the mass-mixing
ratios are represented within 4.5 percent by the formula

13
Rn[mR(z)] = Z bizl-l 7)
i=1

where the coefficients bi are given in Table 2-7. (Note that, in
practice, coefficients with the full CDC-machine accuracy must be used
in Equation (7); see Volume l4a-1.)

Table 2-7. Coefficients for least-squares polynomial fit of
mass-mixing ratios between 45 and 120 km (per
Equation (7)).

i by i b, i b
1 -1.1133052(1) 5.6976779(-6) 11 1.4175461(-16)
2 2.4232553(0) -5.7316192(-8) 12 5.7833135(-20)

-2.1276475(-1) 1.4622167(-10) 13 -1.0792550(-21)
.0471519(-2) 3.3455169(-12)
-3.1267414(-4) 10 -3.8722824(-14)

[, B S 0% ]
'_l
O 00 N O

2-6 LATE REPORTS FOR MEASUREMENTS OF WATER CONTENT

Measurements of the water content between 49 and 70 km have
been made at 65°N by using a rocketborne, cryogenic spectrometer [RS-
77]. The average water content was (3.5 * 2.2) ppmv in this altitude
range. The average water content deduced from the above model is
3.3 ppmv.

- By contrast, much higher water mixing ratios were obtained at

%

42°N between 50 and 80 km from ground-based microwave observations
[RL-77]. Here, a maximum of 15 ppmv was deduced for 60 km and values
ranged between 3 and 15 ppmv between 50 and 80 km. The error in these
measurements could be as high as +40 percent and time-dependent

27
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variations may be important in resolving the difference between these
measurements and expectations based on model calculations [Cr-74a); the
latter predict a maximum of 6 ppmv in the altitude range from 50 to 80
km. Also, no latitude dependence has been established for these alti-

tudes so that a potential discrepancy between these two recent works
[RL-77, RS-77] exists.
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SECTION 3

A MODEL FOR OZONE PROFILES

3-1 INTRODUCTION

As for water, a more accurate and therefore detailed model
of atmospheric ozone is required in ROSCOE-IR than is present in
ROSCOE-Radar. This requirement demands a careful modeling of the
ozone content at altitudes below 50 km where the bulk of the ozone is
found.

The model presented below yields ozone profiles as a func-
tion of altitude, latitude, and season; the longitudinal dependence is
relatively small and was neglected. Other effects not included in the
model are day-to-day fluctuations and very long-term trends [DT-75
(p. 3-28), RC-75b, RF-76]. The data base of the model consists of
(a) the midlatitude ozone model for the 1976 U.S. Standard Atmo-
sphere [KM-76a, US-76)], (b) data on seasonal, latitudinal, and longitu-
dinal variations [Du-70a, Du-71, Du-74, DT-75] at altitudes below 55 km,
and (c) data from a review by Myers [My-75] at altitudes above 55 km.

3-2 GENERAL DESCRIPTION OF THE MODEL

The earth's atmosphere is divided into two shells separated
by a boundary at 55 km for describing the ozone content based on
available data. At altitudes below 55 km, the model accounts for the
variation of ozone with altitude, latitude, and time of year. The
dependence on latitude is continuous and not in terms of latitude
regions as in the model for water. The variation of ozone with
latitude becomes negligible as the altitude approaches 55 km. The
seasonal variation has a maximum in the altitude range between 15 and
35 km, depending on latitude, and declines on either side of the maxi-

mum such that the altitude range at half maximum is approximately 10
km. The seasonal maximum also varies with the time of the year, shift-
ing from late December to April in the northern hemisphere as the alti-
tude decreases from about 30 to 10 km.
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Above 55-km altitude, the model is the same as previously
presented [ly-75]. A diurnal variation in ozone content is included
but no seasonal or geographical effects are treated. Note that the
nighttime ozone density only varies significantly from the daytime
ozone density at altitudes above about 55 km according to theoretical
expectations [Ca-74] and according to observations [CH-66a, Re-68c,
Hi-71a, CH-72].

The basic description of the ozone content of the atmosphere
is given in terms of the mass-mixing ratio. The model predictions are
presented below for selected calculations in terms of the mass-mixing
ratio and also in terms of the partial pressure of ozone to provide
the option of comparing model predictions with literature data.

3-3 OZONE PROFILE UP TO 55 KM

The model for altitudes up to 55 km is presented in two
parts: (a) the mean, seasonal values of the mass-mixing ratio and
partial pressure are formulated as a function of latitude and altitude,
and (b) the seasonal dependence is formulated.

3-3.1 Annual-Mean Ozone Profile (0 < z(km) < 553)

The data on which fits for the annual-mean ozone profile were
based are (a) the 1976 U.S. Standard Atmosphere midlatitude data [KM-
76a, US-76] and (b) data covering a range of latitudes as presented by
Diitsch [Du-74]. The latter data (for the northern hemisphere) are
given for spring (March/April) and fall (October/November); in using
these data to derive annual-mean values, their averages were used.

The averages from the data of Diitsch [Du-74] for 47°N latitude are
good agreement with the midlatitude data of the 1976 U.S. Standard
Amosphere ozone model [US-76], as shown in Table 3-1. The data

employed in arriving at the annual-mean values are listed in Table
These data are fit with the following function for the annual-mean

mixing ratio, ER(kg/kg):




Table 3-1. Comparison of ozone mass-mixing ratio
(kg/kg) data from US-76 and from Du-74,.

US-76 Du-74 US-76 Du-74
z, km Midlatitude 45°¢€ z, km Midlatitude 45°¢
20 5.15(-8)2  5.15(-8) 20 4.27(-6) 4.00(-6)
5 6.20(-8)Y  6.40(-8) 25 8.58(-6)°  8.00(-6)
10 2.18(-7) 1.35(-7) 30 1.09(-5) 1.05(-5)
15 1.12(-6)®  9.05(-6) 35 1.31(-5)P  1.25¢-5)
) aExtrapolated value.

bAverage of values listed [US-76] at z+l and z-1.
CGraphical-interpolation values from data of Table 3-2.

Table 3-2. Ozone mass-mixing ratio data?® as a function
of altitude for selected latitudes.

fi, (kg/ke) {
z,km  L=9° 22° 35° 47° 59° 71° 85°

0 3.11(-8) 3.92(-8) 4.41(-8) [5.30(-8)] 4.42(~-8) 4.25(-8) 1.80(-8)

5 3.68(-8) 4.90(-8) 5.52(-8) 6.59(-8) 6.75(-8) 6.13(-8) 7.66(-8)

10 5.00(-8) 6.88(-8) 9.38(-8) 1L1.44(-7) 4.06(-7) &4.94(-7) 2.38(-7)

15 9.58(-8) 1.64(-7) 5.20(-7) 9.31(-7) 1.96(-6) 2.16(-6) 2.05(-6)

20 1.56(-6) 2.76(-6) 3.30(-6) 4.14(-6) 5.67(-6) 5.76(-6) 5.21(-6)
25 8.84(-6) 9.75(-6) 8.39(-6) 7.87(-6) 8.06(-6) 7.15(-6) 6.50(-6) :
. 30 1.50(-~5) 1.34(-5) 1.16(-5) 1.02(-5) 8.30(-6) 7.20(-6) f
35 1.64(-5) 1.55(-5) 1.55(-5) [1.18(-5)] 7.50(-6) 4 ?

.90(-6) i

8pata based on Du~74, Figure 6.
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A(40.272) _ D
B(z-z.,) -E(z-z,,) + F/(z2+100)
_ 01 + 02
m,(z,L) = lte 17 e (L
R L+ eat(z—zot)
where i 105-L 7
A = 2.66 x 10 (105-LYe =~ &T (2)
B = 0.988 + 0.0136L (3)
D = (1.837 - 0.014L) x 10~° (3)
0.5 -5.2
E = [ 20077 + 6.0 x 107°L” - 0.014 (4)
2
F = |L - - 32 = (6)
1 +e °°
z = altitude, km (7)
_ 6
2y = 29.2 - 0.153L - _—’_"%_UEYI?IUT (9)
1+ e
L = 1latitude, degrees 0 < L < 90 (10)
a, = 0.20 - 6.78 x 1074 (11)
_ -3 -4 2
) Zg, = 46.9 + 6.62 x 107°L + 7.24 x 1077L° . (12)

This mass-mixing ratio as a function of altitude for selected
latitudes is shown in Figure 3-1. 1In Figure 3-2, profiles of the ozone
partial pressure are shown for the same selected latitudes. The ozone
partial pressure, in nanobars (nb), is calculated from the relationship

.

m,P_._(mb)
Pyy(nb) = R air (13)

1.6571 x 10°°
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where Pair(mb) is the total air pressure in millibars (mb) which, for
the purpose of illustrative calculations represented by Figure 3-2, was
taken from US-76.

Qualitative features of the data reflected in the fit func-
tion, Equation (1), as shown in Figure 3-2, include (a) increase in the
total ozone content of the atmosphere as latitude increases, (b) de-
crease in the ozone partial pressure above 24 km as latitude increases,
and (c) a general increase in the maximum ozone partial pressure with
increasing latitude with a concomitant decrease in the altitude at
which the maximum occurs. Because of the lack of data on latitude
dependence above 30 km, the fit function, Equation (1), was constructed
to produce a decrease in the latitudinal variation of ozone content
with increasing altitude; at 55 km, the ozone mass-mixing ratio (for
the seasonally-dependent value) is fixed to be the same at all lati-
tudes with a value of 3.1 x 107° kg/kg (see Section 3-3.2).

3-3.2 Seasonal Dependence of Ozone Profile (0<z(km)<55)

The seasonal dependence of the ozone mass-mixing ratio is in-
cluded by adding a periodic function to Equation (1). The form and
magnitude of this function are determined from the available data for a
latitude of 47°N [Du-74, Figure 14]. These data, in units appropriate

to this report, are presented in Table 3-3 in terms of 2aAm the sea-

sonal range in the mass-mixing ratio and the month (or fraEtional
month) at which the maximum value of the mass-mixing ratio occurs.

To account for the shift in the maximum, a phase shift function,
¢+6(z), is incorporated into the periodic function; ¢ is the reference
phase angle and 8(z) accounts for the shift in phase angle with alti-
tude, z. The variation in the seasonal amplitude in the mass-mixing
ratio with latitude is estimated by using the data of Du-74, Figure 6;
more extensive data apparently are not available. The seasonal ampli-
tude of these data are listed in Table 3-4. The variation in the
seasonal maximum is apparently weak (see Du-74, Figure 1), and is

neglected in the present model.

The above treatment of the seasonal dependence of the mass-

mixing ratio, mp, leads to the following equation:
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a
Table 3-3. Data on seasonal range~ of the ozone mass-
mixing ratio at 47°N.

N

z ZAmE Month of z 2Am Month of *
km kg/kg Maximum km kg/kg Maximum® '
11.8 5.37(-7) 4 22.1 2.07(-6) w2
13.6 8.39(-7) 3.5 23.9 1.94(-6) 1
16.2 8.12(-7) 3.2 25.1 1.66(-6) 1
18.5 1.18(-6) 3.0 26.6 1.38(-6) 1
20.6 1.78(-6) 2.8

@ Range is twice the amplitude (AmR).

b Adapted from Du-74.

¢ January is 1, etc.

Table 3-4. Data on latitude dependence of the seasonal
amplitude@ of the ozone mass-mixing ratio,
at selected altitudes.

AmR, kg/kg
. z

) km L = 9° 22° 35° 47° 59° 71° 85°
8.18(-9) 8.16(-9) 9.80(-9) - 3.27(-9) 1.63(-9) 4.90(-9)
5 9.20(-9) 1.23(-8) 6.13(-9) 7.66(-9) 6.13(-9) 1.23(-8) 9.19(-9)
' 10 6.25(=9) 1.25(-8) 3.13(-8) 6.89(-8) 1.50(-7) 1.81(-7) 1.00(-7)
15 - 2.73(-8) 1.64(-7) 3.42(-7) 3.57(-7) 3.28(-7) 6.38(-7)
20 6.0 (-8) 3.0 (-8) 3.90(-7) 6.60(-7) 1.26(-6) 9.00(-7) 1.08(-6)
x 25 1.95(-7) 4.55(-7) 1.95(-7) 1.95(-7) 4.55(-7) 6.50(-7) 1.43(-6)
30 1.51(-6) 9.67(-7) 2.76(-7) 2.76(-7) 2.77(-7) 2.76(-7) 8.3 (-7)

8 Amplitude is half the range.
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mR(z,f,L) = 1.05 x 10°

| . 0.665 |
x sln{306f—60.12[ 1_465(2-27-7.1_)-*_1 }

1+e 4_90.7(2-13.2)1
+ ER(Z,L), kg/kg (14)
where
0.295
o = 0.235 + (15)
1 + e-0-0982(L-37)
0.4
B = 0.55+ (16)
1 + o0-094(L-38)
11.6
= 31.0 - 0.329L + .
Z9lc 1.0 - 0.329L + 5Ty a7
9.49
z = 37.5 - 0.195L + (18)
02c 1 + ¢ 0-195(L-75)
f = fractional part of year,

and ﬁR(z,L) is given by Equation (1).

To provide a common value of the mass-mixing ratio, mp, at
55 km for latitudes and seasons as stipulated above, the calculation of
mp, in the altitude range 53.0<z(km)<55.0, is made according to the pre-
scription

-6

m, + (3.1 x 10

R B mR){Sps

where ¢ s is the Kroneker delta function, p represents a positive sign

and s is the sign of the quantity (3.1 x 10 ° - mg) .
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The seasonal dependence (in the northern hemisphere) is 1
illustrated in Figures 3-3a through 3-3d and 3-4a through 3-4d where 4
the ozone partial pressure is shown as a function of the fraction of ]
year for (a) selected altitudes at latitudes of 9°, 35°, 59°, and 85°¢ I
and (b) selected latitudes at altitudes of 5, 15, 25, and 35 km,
respectively.

It is to be understood that Equations (14) through (19)
strictly apply only to the northern hemisphere. However, we will
apply these equations to the southern hemisphere by making the simplify-
3 ing assumption of season reversal. Thus, if L< 0, we set

fa = f + 0.5 ;

ew old

then, if fnew:)l‘o’ set

fnew - f1:1ew - 1.0

Use only |[L| in Equations (14) through (18).

3-3.3 Longitudinal Dependence of Ozone Profile

The ozone concentration varies longitudinally. The varia-
tion of the annual-mean ozone concentration and of the seasonal ampli-
tude have been considered on the basis of data presented in the CIAP
Monograph 1 [DT-75]. The maximum variation of the annual-mean concen-
tration is *+10 percent and that of the seasonal amplitude is 15 per-
cent; these variations are regarded as negligible for the present

. model.

3-4 OZONE PROFILE ABOVE 55 KM

The ozone profiles for altitudes above 55 km have been pre-

- sented previously [My-75]. These profiles account for diurnal varia-

tions in ozone but not for geographical variations. The mixing ratio
’ data for altitudes of 55 km and above are listed in Table 3-5 and shown
in Figure 3-5.
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Table 3-5. Data® on ozone mass-mixing ratio at 55-km
and higher altitudes.

! mp (kg /kg) z mg (kg/kg)
km Noon Midnight km Noon Midnight
55 3.1(-6) 3.1(-6) 95 1.4(-7) 1.5(-6)
60 1.9(-6) 3.3(-6) 100 3.6(-8) 3.8(-7)
65 1.0(-6) 5.9(-6) 105 1.2(-8) 9.9(-8)
70 5.3(-7) 4.3(-6) 110 3.0¢(-9) 3.3(-8)
75 2.6(-7) 1.5(-6) 115 7.1(-10) 6.5(-9)
80 2.9¢-7) 2.6(-7) 120 1.5(-10) 6.8(-10)
85 1.2(-6) 5.6(-6) >120 b c
90 7.0¢-7) 4.0(-6)
a

Data from Table 4-2 of My-75 converted to units of

mixing ratio, with densities from US-76:

mp (kg/kg) = [04(cm™>)1/[1.255 x 101

At 55 km,

mp ( > 120)

R

mp (> 120) = mR(IZO)e-O'ZA(z-lzo).

mR(lzo)e‘O. 30(2‘120) .

P

47

air

mass-

(kg/m3)]-

the above values differ from those derived from
My-75 to ensure continuity in m
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SECTION 4
A MASS-MIXING RATIO PROFILE FOR METHANE

4-1 INTRODUCTION

Measurements of the methane composition of the atmosphere as
a function of altitude have been made from ground level to about 50 km
(DT-75]. Above 50 km, reliance has to be placed on model calculations
[Hu-73a].

Satellite measurements [PD-74] show that the global and sea-
sonal variation of the total methane content is less than 25 percent
of the mean value. However, in the stratosphere, there are indications
[FR-74] of larger variations in the mixing ratio as a function of lati-
tude. Thus, questions remain about the geographical and seasonal
dependence of the methane content; consequently, the present model is

presented as a mean-value model.

4-2 THE METHANE PROFILE

The data on which the profile for methane is based are given
in Table &4-1. The reference data [DT-74, Hu-73a] are given either in
ppmv (parts per million by volume) or in molecules/m3 and are con-
verted, as shown in Table 4-1, to ppmm (parts per million by mass).
For the conversions from molecules/m” to ppmm, the atmospheric den-
sities were those used in the references. For DT-75, a density func-
tion is provided and for Hu-73a, the CIRA-65 mean atmosphere [CI-65]
was used. The data listed as being from DT-75 are based on an esti-
mated mean of the data compiled in Figure 3.82 of that reference. The
data of Table 4-1 are plotted in Figure 4-1. Above z = 120 km, an
exponential decrease in the mixing ratio, as given by the formula at
the bottom of Table 4-1, is assumed. ’

The data of Table 4-1 apply to all latitudes and longitudes

and to all diurnal conditions.
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SECTION 5
A MASS-MIXING RATIC PROFILE FOR CARBON MONOXIDE

5-1 INTRODUCTION

From measurements of the carbon monoxide mixing ratio of the
atmosphere [SJ-70, EH-74, FR-74, EH-75, DT-75, WW-76], the mixing ratio
profile can be deduced up to about 80 km. Above about 80 km, the pro-
file deduced from the experimental observations [WW-76] is not unique
but is in reasonable agreement with model calculations [HO-70, WM-72,
Hu-73a] and, in the absence of the experimental data, can be justifi-

ably used as the carbon monoxide profile.

In the stratosphere, there is evidence for variation of the
mixing ratio with latitude [FR-74]; this variation is not incorporated

into the present model as the supporting data are too limited.

5-2 THE CARBON MONOXIDE PROFILE

The data on carbon monoxide mass-mixing ratios are presented

in Table 5-1 and shown in Figure 5-1.

In the troposphere, the volume-mixing ratio, ppmv, lies be-
tween 0.1 and 0.15 [SJ-70]. ©Near the earth's surface or over oceans
the mixing ratio values may be significantly larger or smaller than the
limits of the range given. For the present model, a mean value of the

mixing ratio has been chosen.

In the stratosphere, the selected data of Table 5-1 are based
on a collation [EH-74] plus later reports [FR-74, EH-75] from which an

estimated profile of the mixing ratio between 8 and 45 km was chosen.

In the mesosphere, the data of Table 5-1 are from ground-

based microwave measurements for the altitude range from 45 to 80 km.

Above 80 km, the experimental data do not lead to a unique

mixing ratio profile [WW-76]. Comparison of the profile derived from
the experimental data with model calculations [HO-70, WM-72, Hu-73a]
shows (a) good agreement in the range from 120 to 150 km and (b) good
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Table 5-1. Mass-mixing ratios of carbon monoxide.

z MR z mg z MR
km  ppmm Ref. km  ppmm  Ref. km ppmm  Ref.

0 0.12  SJ-70 55 0.127 WW-76 110 32.0 WW-76

5 0.12  SJ-70 60 0.254 115  32.6 1
10 0.11  EH-74% 65  0.442 120 33.6 }
15 0.072 70 0.967 125  34.4 |
20 0.054 75  2.21 130 34.8
25  0.048 80 10.2 135  34.8 ‘
30 0.0438 85 18.5 140 34.8 1
35  0.048 90 24.3 145  34.5 ¥ ,
40  0.048 EH-74% 95 26.6 150 34.1  WW-76 ’
45 0.056 WW-76 100 29.2 150 b HO-70

50 0.070 WW-76 105 30.9  WW-76

The values listed here represent an estimated mean
curve from the data collated in EH-74.

mp = mg (150) exp[-0.0047(z-150)]. {

The calculations of HO-70 above 150 km were used to
obtain the slope amR/az used in the equation. ]

agreement with one of the calculations [HO-70] in the range from 80 to
120 km. In the range from 80 to 150 km, the experimentally derived
values of the mixing ratio are chosen, as these provide the smoothest
transition of the mixing ratio profile between 80 and 120 km and are
at least as likely to be as correct as any of the model calculations.

Above 150 km, an exponential decrease in the mass-mixing

ratio is assumed, as shown at the bottom of Table 5-1.

The data of Table 5-1 apply at all latitudes and longitudes

and for all diurnal conditions,
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SECTION 6
A DENSITY PROFILE FOR HYDROXYL RADICAL

6-1 INTRODUCTION

Only a few measurements of the hydroxyl radical density have
been made [DH-76, PE-76, WD-75, An-71d, An-76, Bu-76]. The measure-
ments have been made between ground and 70 km so that, while few in
number, they provide an important guide to density values in this

range of altitudes.

The significance of measurements in the troposphere [DH-76,
PE-76, WD-75] is not yet clear. It has been argued on the basis of
(a) atmospheric halocarbon data [Si-77], (b) the latitudinal distribu-
tion of CO mixing ratios, and (c¢) the rate of nitrate precipitation
in the northern hemisphere [Wa-74] that the number density of hydroxyl

-3 whereas measure-

radicals in the troposphere is typically 5 x 10° cm
ments yield values roughly ten times larger. Two of the measurements
[PE-76, WD-75] were ground based and are probably influenced by urban
and industrial emissions [DH-76]; the other measurements {[DH-76] were
made at altitudes of 7 and 11.5 km but at the low latitudes of 21° and
32°N. Calculations which assume a high tropopause — 16 km, say, as
found at lower latitudes — yield a significantly greater concentra-
tion of hydroxyl radicals at and near 10 km than do calculations which
assume a tropopause at 10 km. Thus, both arguments and measurements

could be correct if applied only over specific geographical locations.

There have been many calculations of the vertical profile of
hydroxyl radical. Recent calculations have been summarized in DT-75
and SW-76; also see WI-74, TB-72, BT-73a, and Hu-73a. There is a con-
siderable scatter in the predictions of the models, of the order of a
factor of 10. The general trends of the model profiles are similar
[DT-75]. Model calculations show a significant diurnal variation in
hydroxyl radical density up to about 80 km [WT-74, Hu-73a, TB-72].
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The profiles presented below include the diurnal variation
in hydroxyl radical densities but not geographical variations; there
are essentially no data indicating the latter variations but they are

likely to be large.

6-2 THE HYDROXYL RADICAL PROFILE

The experimental data and the results of calculations for
daytime are shown in Figure 6-1. The experimental data at ground level
[PE-76] are shown only by an upper limit. The data at 7 and 11.5 km
have been discussed above. The experimental data between 30 and 70 km
lack consistency which makes the profile selection difficult. The cal-
culated densities are not in agreement generally with the experimental
data. Of the many model calculations, all but one fall in Region 1 as
indicated in Figure 6-1; the exception determines the boundary of

Region 2.

The estimated daytime profile data as shown in Table 6-1 and
Figure 6-2 are an arbitrary compromise among the data shown in Figure
6-1. 1In the troposphere the estimate represents a compromise between
the data shown in Figure 6-1 and the arguments for lower concentrations
discussed above [Si-77, Wa-74].

To obtain a midnight hydroxyl radical profile, the daytime
profile data given in Table 6-1 are divided by the ratio of the noon-
to midnight-hydroxyl radical density; the latter are shown in Figure
6-3 and are based on calculations [WT-74, Hu-73a]. Since the hydroxyl
radical densities have a large uncertainty, the second-order variations
in the ratios, as indicated by the data plotted in Figure 6-3, are
ignored and a smooth curve (dashed in Figure 6-3) is drawn through the
data to obtain the ratios over the range of altitudes up to 100 km.

The midnight densities, calculated according to the above procedure,
are listed in Table 6-1 and plotted in Figure 6-2.

Above 100 km, both the noon and midnight hydroxyl radical

density profiles are allowed to decrease exponentially to a constant
value of 10 cm-3, in rough accord with the calculations of Hunt [Hu-

73a] at altitudes above 100 km.
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Figure 6-3. Ratio of noon- to midnight-hydroxyl
radical density.
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SECTION 7
A DENSITY PROFILE FOR HYDROPEROXYL RADICAL

7-1 INTRODUCTION

There are apparently no measurements of the hydroperoxyl
radical density in the earth's atmosphere. Hence, the density profile

selected below is based entirely on model calculations. The model

calculations have been summarized in DT-75 and SW-76; also see WT-74
and Hu-73a.

7-2 THE HYDROPEROXYL RADICAL PROFILE

The data selected from the model calculations for noon condi-
tions are listed in Table 7-1 and plotted in Figure 7-1. Between 0 and
10 km, the data are obtained by extrapolation of an estimated mean
curve through the results of model calculations at higher altitudes.
Between 10 and 50 km, the data represent an estimated mean of model
calculations [DT-75, SW-76]. At 55 km, the datum is obtained by in-
terpolation. For 60 km and above, the data a.: from a model calcula-
tion [Hu-73a].

A diurnal variation is found in the model calculations. To
obtain a midnight hydroperoxyl radical profile, the noon profile given
in Table 7-1 is divided by the ratio of the noon- to midnight-hydro-
peroxyl radical density; the latter are shown in Figure 7-2 and are

* taken from WI-74 and Hu-73a. Since the hydroperoxyl radical densities
' have a large uncertainty, the second-order variations in the ratios,
as indicated by the data plotted in Figure 7-2, are ignored and a
smooth curve (dashed in Figure 7-2) is drawn through the data to ob-
- tain the ratios over the range of altitudes up to 100 km. The mid-

*

night densities, calculated according to the above procedure, are
listed in Table 7-1 and plotted in Figure 7-1.

Above 100 km, the hydroperoxyl radical densities are calcu-
lated as indicated in Table 7-1.
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SECTION 8

A DENSITY PROFILE FOR HYDROGEN ATOMS

8-1 INTRODUCTION

A moderate number of indirect measurements of the hydrogen
atom density above 100 km ha:e been made; of particular use in the pre-
sent effort are the densities deduced from satellite measurements [MM-
73, MM-70c, MW-70b, Me-70a, Me-69a] of the Lyman-alpha airglow.

Density profiles have been deduced with the aid of a combination of
models of Kockarts and Nicolet and of Chamberlain, normalized to a
specific density at 100 km so as to obtain agreement with the observa-
tions. The airglow measurements [MM-73] show a diurnal variation in
hydrogen atom density above 100 km by a factor of about 1.7. However,
in deriving a hydrogen atom profile for noon and midnight conditions in

this report, we neglect this diurnal variation.

For altitudes below 100 km, there are several model calcula-
tions [SW-76, HS-74a, LD-74, LD-74a, LD-74b, Hu-73a, TB-72] and a
profile of hydrogen atom densities based on observations [EL-73]. For
those model calculations concerned with diurnal variations, a strong
effect is found bel~w about 85 km and this is included in the profiles
derived here. Other model calculations [HS~-74a, LD-74, LD-74a, LD-
74b] focus on the flux of hydrogen atoms escaping from the earth's
atmosphere and on the relation between the escape flux and the hydro-
gen mixing ratio in the stratosphere. Certain of the models [HS-74a,
LD-74] require mixing ratio contributions from stratospheric water,
the amounts of which are in good accord with the H,0 model presented in
Section 2. In other model studies [LD-74a, LD-74b] the acceptance of
generally discredited data on H,0 mixing ratios in the stratosphere
forces a search for mechanisms of hydrogen atom escape other than the

normal hydrogen atom upward flux.

The experimentally-based hydrogen atom profiles in the meso-
sphere [EL-73] are derived from simultaneous measurements of fluore-

scence from Oo(lﬂg) and vibrationally excited OH and the assumed
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kinetics of 03 photalysis, O3 formation, the H + O3 reaction, and
quenching of some of the involved species. The expected quenching of
OH by O was not accounted for in view of certain atmospheric observa- .
tions [EL-73]; should this prove to be an incorrect procedure, the
hydrogen profile would require revision,

8-2 THE HYDROGEN ATOM PROFILE

The densities derived from the model calculations and obser-
vations are shown in Figure 8-1. The model calculations are shown for

altitudes only up to 100 km since, for higher altitudes, reliance is

placed on the densities derived from observations. »
L 2
The normalization of the hydrogen atom density to 3 x lO7 .

-3

cm at 100 km is consistent with the observations [MM-70c]. A some-~
what more refined normalization has been adopted in the independent
observations of the solar Lyman-alpha airglow [VB-73]; this normaliza-

tion ranges from 2.5 x 107 cm_3 at low solar activity to &4 x 107 cm~3

at high solar activity.

Between 40- and 100-km altitude, the selected hydrogen atom

profile represents a compromise among the various model calculations

and the experimentally-based data. Between 70 and 100 km, only the
model calculations which are formulated with regard to agreement on the

hydrogen atom escape flux have been considered in the profile selection.

The selected data for the hydrogen atom densities are listed
in Table 8-1 and shown in Figure 8-2 for altitudes between 10 and 140 km
and in Figure 8-3 for altitudes between 100 and 1000 km. Above 100-km
altitude, the selected profile is represented by the analytical fit
function presented in Table 8-1. This fit function applies to hydrogen
atom densities which obtain for an exospheric temperature of 1100°C. A
recent observation [LM-76] has led to a value of [H] = 9.2 x 104 cm™3

- at 650 km for an exospheric temperature of 950°K. This value would

! correspond to about 4.4 x 104 cm°3 for an exospheric temperature of
i! 1100°K (based on the variation of hydrogen atom density with exospheric
temperature shown in Figure 3 of Me-69a) compared with the value

3.9 x 10% em™3 for the profile selected here.
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Figure 8-1. Measured and calculated hydrogen atom
density between 10- and 140-km altitude.
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SECTION 9

A DENSITY PROFILE FOR 0(lD)

3 There are apparently no measurements of O(lD) densities in
the atmosphere. The profile derived here is based on model calcula-

b tions. In the altitude range between 10 and 50 km, the various model
’ calculations have been collated and compared [DT-75, SW-76]. From the

available calculations, the one chosen here is the only one for an

overhead sun [Ni-74]; this will represent the noon condition for the

present profile. Between 60 and 160 km, the model calculations of

Hunt [Hu-73a] are used. Above 160 km, the O(lD) density is assumed

to decrease in proportion to the decrease of atomic oxygen [HS-78].

el b b Cale adintte e e cudi

The data for the profile under noon conditions are listed in
Table 9-1 and shown in Figure 9-1 for altitudes between 20 and 140 km.
The 0(1D) densities for midnight conditions are neglected [Hu-73a, SL-
70a, SL-72].




Table 9-1. O(lD) densities for noon conditions.

. [0(D)] [0("D)] [0('D)] 4
km em™3 Ref. km em™3 Ref. km em™ 3 Ref.
0 1.0(-2) 60  4.2(2) b 120 6.4(3) b
5 1.0(-2) 65 2.7(2) 125  6.4(3) g
. 10 1.0¢-2) a 70 4.6(1) 130 6.1(3)
15  3.8(-1) 75 1.7(1) 135 5.8(3)
20 2.4(0) 80  1.4(1) 140 5.5(3)
25 1.1(Q1) 85 5.2(1) 145 5.5(3)
30 3.9(1) 90  5.8(1) 150 5.3(3)
35 1.4(2) 95  2.2(2) 155 5.2(3) t
40 3.5(2) 100 8.0(2) 160 5.1(3) b
L 45 6.0(2) | 105  2.0(3) >160 e
E 50 6.0(2) a 110 3.9(3) ,
‘ 55 5.0(2) 115 5.2(3) b

& pr-75, SW-76, and Ni-74 (x = 0°).
b Hu-73a.
¢ [olp)] = ([o(*D)1/[01340 L0140

A2S

-
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Figure 9-1. Selected 0(1D) profile between 20- and
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SECTION 10
A VOLUME-MIXING RATIO PROFILE FOR NITROUS OXIDE

10-1 INTRODUCTION

A large number of measurements of nitrous oxide have been
made up to about 30-km altitude [SA-77, FR-74, EH-75, EH-74, Go-69c,
§J-70a, HB-74a, MG-73b, RK-76] and a few up to about 60 km [EH-75].
These measurements are roughly in accord but indicate a latitudinal
dependence. A few calculations have been made [SL-70a, SL-72, Cr-74a,
Vu-75, ME-76] but mainly for stratospheric altitudes. The calculations
indicate a latitudinal [Vu-75, ME-76] and seasonal [Vu-75] dependence.

A profile is obtained here based on the experimental data up
to about 60 km and at higher altitudes it is based on the assumption
of a constant mixing ratio. A latitudinal dependence is incorporated
into the model profile.

10-2 THE NITROUS OXIDE PROFILE

Experimental data on the volume-mixing ratio, ppbv, are
listed in Table 10-1 for altitudes up to 62 km. These data are plotted
in Ficure 10-1 except for that at latitudes of 9° and 51°N which are
discussed below. The data at high altitudes (z & 40 km) [EH-75] were
obtained over a range of altitudes (see Table 10-1). These data are
plotted in Figure 10-1 at an altitude at which the mean volume-mixing
ratio would be found if the volume-mixing ratio were a function of
altitude according to the expression

mp(z) = moe_z/z0 (L
where mR(z) is the mixing ratio at altitude z. For these data [EH-75]
the vertical bars in Figure 10-1 represent the range of altitudes for

the measurements and the horizontal bars represent the uncertainties
in the volume-mixing ratios.
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From the data plotted in Figure 10-1, an estimated mean curve
has been selected and this is shown in Figure 10-2 by the solid curve
between 0- and 55-km altitude. The corresponding data are listed in
Table 10-2 at 5-km intervals. The three additional sets of data also

shown in Figure 10-2 are now discussed.

Table 10-2. Selected values of N,0O volume-mixing ratio.

z mR z mR z TR 2 R b
km ppbv km ppbv km ppbv km ppbv

3.1(2) 20 2.1(2) 40 9.4(0) >55 1.3(-1)
5  2.6(2) 25 1.2(2) 45  2.9(0)
10 2.8(2) 30 6.0(1) 50 7.8(-1)
! 15 2.9(2) 35 2.5(1) 55 1.3(-1)

Data obtained at low latitudes, L = 9°N [SA-77], yield larger
mixing ratios than those found at higher latitudes as represented by
the solid curve of Figure 10-2. Further examination of all the data

(Figures 10-1 and 10-2) between 25 and 35 km indicates a general in-
crease in mixing ratio with decrease in latitude. This general trend
is supported by calculations and analyses [ME-76]. The following
expression can be used to account for the increase in volume-mixing

ratio with decrease in latitude:

o 2,92 1
M T MRl TSR0 76z T30Y] T expl0. T (L=23)] (2)

[¢]

where mp is the mixing ratio given by the solid curve of Figure 10-2
and the data of Table 10-2, z is the altitude (km), and L is the
latitude (degrees), north or south. Figure 10-3 shows the volume-

- mixing ratio as a function of latitude at selected altitudes according

*,

to Equation (2). The volume-mixing ratios for L = 0° are shown in
Figure 10-2 by the dashed curve. Thus, the two curves in Figure 10-2
bracket the range of mixing ratio values generated by varying the

value of latitude at each altitude.
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A aeack

A second set of data shown in Figure 10-2, obtained at 51°N,
are significantly lower than data in Figure 10-1, an unexpected feature
based on the latitude at which the measurements were made. A possible
explanation [SA-77] is that there was a mean downward stratospheric
motion at the location of the measurements. Other measurements [SJ-70a]
near the same latitude but at greatly different longitudes yield higher
mixing ratios.

A third set of data [MG-73b] plotted in Figure 10-2 were not
included in Figure 10-1 since it was not clear from the original paper
(MG-73b] that the reported mixing ratios were volume-mixing ratios.
These data are plotted in Figures 10-2 assuming they do represent
volume-mixing ratios; Harries et al. [HB-74a] have also treated these
data as volume-mixing ratios. The third set of data lies about 20 per-
cent higher on the mixing ratio scale than the selected curve (the
solid line of Figure 10-2). 1In view of the scatter in the data of
Figure 10-1, this is probably not significant.

Additional measurements of the N,0 volume-mixing ratios from
aircraft have been reported [RK-76]. These measurements lead to
volume-mixing ratios of about 333 ppbv (with standard errors of less
than 0.2 percent) but only the upper-limit altitude, about 14.2 km, was
reported. At 14.2 km, the recommended values from Figure 10-2 lie be-
tween 290 and 310 ppbv.

The calculations of the NZO profile in the stratsophere [Cr-
74a, ME-76] are in reasonable agreement with the data. Calculations of
Vupputuri [Vu-75], showing both a latitudinal and seasonal dependence
for the volume-mixing ratio, are not in agreement with the latitudinal

dependence given by the experimental data presented above.

Above 55-km altitude, the volume-mixing ratio is assumed to
be constant at 0.13 ppbv. One calculation [SL-70a, SL-72] made to 140
km, shows the mixing ratio increasing between 50 and 140 km by about a
factor of six; however, the absolute values of the volume-mixing ratios
deduced from these calculations [SL-70a, SL-72] are high also by a
factor of about six. Since the experimentally measured volume-mixing
ratio is quite small already at 50 km, the densities of N20 at higher
altitudes will be negligible even if the error in magnitude should be
as large as a factor of six.
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10-3 ADDENDUM

}

After the selection of the N,0 profile data and formulation
of Equation (2) describing the latitude dependence of the N20 mixing
ratio, an additional report on stratospheric measurements of N,0
appeared [KL-77a]. These measurements covered the altitude range
between 12 and 20 km and the latitude range between 1° and 75°N. These
data [KL-77a] are presented in Table 10-3. Only the mean latitudes and
mixing ratios are listed in this table; data on longitude are not given
here. Also listed in Table 10-3 are mixing ratios calculated from
Equation (2) and the solid-curve profile in Figure 10-2. The correla-

tion coefficient for the measured and calculated mixing ratios of

LT YOV RPICIEpe ey

Table 10-3 is about 0.85. Thus, the representation of N,0 mixing
ratios presented in Section 10-2 is adequate and is retained without

b

changes.

Table 10-3. Comparison of measured [KL-77a] and adopted
stratospheric N,0 mixing ratios.

LR e SR RS

Mean Mixing ratio, ppbv Mean Mixing ratio, ppbv &

z Latitude Measured Adopted z Latitude Measured Adopted {

km °N [KL-77a] Eq. (2) km °N [KL-77a] Eq. (2) ;
12.2 73 295 290 19.2 50 235 230
15.2 73 280 290 15.2 60 290 290
16.8 37.5 300 270 15.2 50 295 290
13.7 60 305 290 13.7 37.5 305 290
15.2 25.5 315 305 16.8 25.5 305 290

.o 16.8 3 310 320 15.2 13.5 320 320 i
' 18.3 13.5 290 307 18.3 25.5 280 275
: 19.2 59.5 230 230 19.2 25.5 285 260
" 18.3 73 220 245 16.8 50 275 270

- 16.8 73 240 270 19.2 37.5 255 235 7

g 16.8  59.5 260 270 15.2 37.5 305 295 N
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SECTION 11
A DENSITY PROFILE FOR NITRIC OXIDE

11-1 INTRODUCTION

The density profile for nitric oxide previously given [My-
75] is herein revised, based on additional significant experimental
measurements [BN-77, RS-75b, RS-76d, EM-77a, TI-75, DA-77, CS-76,
TB-76]. These new data give information on the diurnal variation and
on the variations with latitude, longitude, and magnetic activity.
The analyses of these and other, unreported data are still in progress
so that the revised model given below remains tentative.

Additional model calculations have been reported [SO-76,
OK-77; also see 0J-75]. The important relations emphasized in S0-76
are the sensitivity of the nitric oxide concentration to (a) the
molecular oxygen concentration above about 150 km and (b) the ratio
of atomic- tomolecular-oxygen concentrations below 150 km. The pro-
files provided here are largely empirical and modeling these
dependencies becomes difficult.

The dependence of the nitric oxide concentration on the
molecular oxygen concentration above 150 km had been included [My-75]
by introducing a dependence of the nitric oxide concentration on the
solar flux; this relationship is retained in the present model. 1In
this connection, note that the recent measurements [RS-75b, RS-76d,
EM-77a] correspond to low solar activity. By contrast, no attempt has
been made to include the dependence of the nitric oxide on the ratio
of atomic to molecular oxygen; this simplification may lead to signi-
ficant inaccuracies below 150 km. Note that there are very few
measurements of nitric oxide between 100- and 150-km altitude.

The profiles presented below include the diurnal and lati-

tudinal dependence of the nitric oxide concentration.
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11-2 NITRIC OXIDE DENSITIES ABOVE 100 KM

The available new measurements [RS-75b, RS-76d, EM-77a, DA- :
77] were obtained from satellites and cover the range generally be-
tween 160- and 250-km altitude. The most extensive measurements are 3
reported by Engebretson et al. [EM-77a]. A diurnal vatiation, based
on the data in EM-77a, has been deduced here to be given by the form

Rn[NO]z,t,F = A(z,F) + B(z)sin(l5t-¢) e9)
where A and B depend on the altitude (z), F is the 10.7-cm solar flux,
t is the local apparent time (in decimal hours), and ¢ is the phase
angle selected to be 105° which results in a maximum density at t=13
hr [0J-75, SO0-76]. The previously given procedure [My-75] is used for
introducing the dependence on F. At 100 km, the nitric o§ide density

’

is fixed (to two significant figures) to be 3.4 x 107 cm
dent of F; at 215 km, the dependence of the nitric oxide on F is

indepen-

R . SRR A A ol

established on the basis of experimental observations and model cal-

|

culatione. For intermediate altitudes and those above 215 km, nitric
oxide densities are determined by interpolation and extrapolation as
indicated below.

To obtain the dependence of the nitric oxide density on F,
the data previously used and more recent data were adjusted for

diurnal variation to t =19 hr; in this case, the second term on the
right-hand side of Equation (1) is zero. These data and the adjusted
values are given in Table 11-1 and shown in Figure 11-1. The curve
in Figure 11-1 is given by the expression f

: - _ 6.08 _ |
_ afN0]yyg 19 p = A(2L5,F) = 9.68 + e 15 (2) |

By combining Equation (2) with the value of A at 100 km and using a

linear relation, we prescribe the value of A at any altitude above

v 100 km to be given by
_ z - 100
A(z,F) = A+ [A(215,F) - A_] N1 (3)




Table 11-1., Dependence of the nitric oxide densities at
215-km altitude on'local apparent time (t)
and decimetric solar flux (F).
[NOlyy5 ¢« po em™>
a t b Adjusted
Date Hours F Measured to t=19 hrs Reference
1/04/74 18.75 75 <7(5) <6.5(5) FT-74
6/--/74 - 142 5(6) 5(6)
1/31/69 14.17 130 ) Me-71
2/06/69 14.48 162.5( 2:9(0) 1.0(6) 0J-75
5/26/71 5.93 91 1.5(6) 2.0(6) Ti-73,0J-75
2/08/74 ~13.0 81 6.8(5) 2.3(5) RS-75b,RS-76d
5/16/74 10.92-11.92 79 1.3(6) 4.8(5) EM-77a
5/28/74 8.97-9.27 85 8.0(5) 4.8(5) EM-77a
6/10/74 17.9 95 3.9(5) 5.2(5) EM-77a
a Month/day/year.
b . -22 -2 -1
In units of 10 Wm Hz ~.
! where
‘ - n 7. .
! A0 = 2n[N0]100’L N n(3.4 x 107) (4)

A, will be defined more precisely later.

The diurnal variation of [NO] is small at 100 km and in-
creases with increasing altitude [My-75]. Based on the recent data
[EM-77a], the coefficient B(z) in Equation (1), which governs the
magnitude of the diurnal variation, is taken to be

.

B(z) = 1.1{1 - exp[-0.066(z-100)]} =z > 100 km. (5)
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) Figure 11-1. Nitric oxide densities at 215-km altitude and
19 hours as a function of F.
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A strong latitudinal dependence has been reported [CS-76];
however, no data on this dependence are available at present. Thus, an
estimate of the magnitude of the change in nitric oxide density by a
factor of four between 0° and 90° latitude has been made. This esti-
mate was guided by the magnitudes of the corresponding changes in the
case of nitrogen atoms [TT-76a, EM-77] and on the preliminary report
[DA-77] of measurements of nitric oxide in the nighttime equatorial
region. The densities of nitric oxide represented by Equations (1)
through (5) were assumed to apply to a latitude of 50°; it follows
that a more general expression,

Rn[NO]Z ¢ wn[G(L)] + A(z,F) + B(z2)sin(15t-105), 1 (6)

,L,F

where the latitude-dependent function is
G(L) = 0.375 + 0.0125L , €))

gives the nitric oxide density as a function of altitude, diurnal time,
latitude, and solar flux, for z > 100 km.

The nitric oxide densities calculated according to Equations
(1) through (7) are compared with the observed nitric oxide densities
in Table 11-2, The mean absolute error is 50 percent.

The nitric oxide densities calculated according to Equations
(1) through (7) are compared with the model calculations [S0-76] in
Table 11-3. The purpose of this comparison is to give an indication of
the possible errors involved in using Equations (1) through (7) between
100- and 150-km agltitudes where, as noted above, the errors are likely
to be high due to the complexity of the natural phenomena. For the
conditions of the measurements of FT-74, the absolute errors range from
0 to 280 percent whereas for the conditions of the measurements of
RS-75b, the nitric oxiée densities computed according to Equations (1)
through (7) are factors of 7 to 11 higher than those computed in S0-76.

Improvement in the empirical model of nitric oxide densities
presented here will require measurements between 100- and 150-km
altitude for a variety of conditions and access to detailed results of
code models [e.g., SO-761].
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Table 11-2. Comparison of calculated and measured nitric
oxide densities above 100-km altitude.

. . ) [NO1, o 1§, cm™d
km Fé Degrees Hours Eq. (6) Measured Ref.
180 79 50.061 11.91 3.9(6) 5.0(6) EM-77a
85 42.91 9.26 2.9(6) 2.3(6)
94 34.78 6.36 1.9(6) 1.5(6)
200 79 47.79 11.70 1.7(¢6) 2.2(6)
85 40.01 9.11 1.3(6) 1.3(6)
94 31.53 6.24 7.3(5) 7.1(5)
240 79 43,22 11.43 3.005 4.8(5)
85 35.19 8.90 2.5(5) 3.4(5) ¢
94 26.34 6.05 1.7(5) 1.3(5) EM-77a
‘ 215 75 32 18.75  2.2(5) <7(5)  FT-74
160.5 81 38.9 12.89 8.0(6) 3.4(6) RS-75b
: 178.6 81 32.9 13.15 3.6(6) 2.1(6) RS-75d
- 200.4 81 28.8 13.30 1.4(6) 1.1(6) TT-76a
1 246.7 81 22.7 13.51 7.6(5) v2(5) TT-76a
120 142 45 NA 2.1(7) 3.0(7) Kr-70a
160 142 45 8.8(6) 1.3(7)
200 142 45 l 3.7(6) 7.2(6) l ,
220 142 45 NA 2.4(6) 3.8(6) Kr-70a ]
2 In units of 10722 y m™ 2 Hz 1. !

.
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Table 11-3. Comparisona of nitric oxide densities
calculated from Equation (6) with model
calculations.

-3
L £ LNO]Z t,L,F* @
z 1 2 2
km  FP Degrees Hours Eq. (6) Model® Ref.
103 75 32 24.0 1.9(7) 5.0(6) FT-74
107 14.0 2.9¢(7) 1.0(7)
125 12.0 2.2(7) 1.5(7)
153 18.0 3.7(6) 5.0(6)
153 4.0 1.3(6) 1.0(6)
183 \ Y 8.0 1.0(6) 1,0(6) FT-74
120 81 33d 13 2.8(7) 2.5(6) RS-75b
140 81 33 13 1.5(7) 4,4(6) RS-75b
2 The comparisons, with arbitrarily selected data of the
model calculations, are intended only to give an
indication of the magnitude of the errors involved in
using Equations (1) through (7) between 100-and 150-km
altitude where experimental data are lacking.
Y In units of 10722 w w2 Hz"L, 1
¢ The mode] calculations are reported in SO0-76 and the
calculations apply to the conditions for the measure-
ments listed in Reference.
d

This value selected for the model calculations [S0-76].
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11-3 NITRIC OXIDE DENSITIES BELOW 100 KM

Since the previous report [My-75] there have been two rocket-
borne measurements [BN-77, TI-75] of the nitric oxide distribution be-
tween 70- and 115-km altitude. These data, together with those of
Meira [Me-71], have been used to revise the selected daytime nitric
oxide densities between 65 and 100 km. Below 65 km, we retained the

nitric oxide densities previously selected [My-75].

The nighttime densities which were based on model calcula-
tions [My-75] were revised to be consistent with the new daytime values.
All selected densities are listed in Table 11-4. Note that for alti-
tudes of 100 km and lower, the diurnal variation is treated by using
one set of values for the nitric oxide density for daytime and another
set of values for nighttime, as done previously [My-75].

The latitude dependence apparently extends below 100-km alti-
tude; in the present model, this dependence is assumed for altitudes
down to anhout 60 km by use of the relation

+ C(z)n[G(L)] (8)

Qn[NOJZ i L = Qn[NO]z,i

where the subscripts z, i, and L denote altitude (km), diurnal condition
(noon or midnight), and (the absolute value of) latitude (degrees),
respectively. The values of [Nolz,i for i = noon and i = midnight are
given in Table 11-4 for z = 0(5)100 km. The latitude-dependent func-
tion, G(L), is given by Equation (7). The altitude-dependent coef-

ficient for the latitude term,
C(z) = {1 + exp[-0.22(z—72)]}-1 , 9)

is designed to make the latitude dependence negligible for =z X 60 km
and to allow it to grow to a full effect for z A 85 km.

11-4 PRECISE DEFINITION OF AO

The quantity Ao in Equation (4) can now be defined precisely.
By requiring equality of the two expressions for the nitric oxide
density (Equations (6) and (8)) at 100-km altitude, and using the facts
that
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Table 11-4. Nitric oxide profile for noon and mid-
night conditions between 0-and 100-km
altitude and at 50° latitude.
[¥0], ; 59, cm > [¥0], ; 5. cm >
Z 2 2 2z 2 2
km Noon Midnight km Noon Midnight :
0 1.0(10) 1.0 55 3.0(8) 1.0(4)
5 3.4(9) 60 1.4(8) 1.1(5)
10 1.3(9) 65 6.4(7) 2.3(5)
15 5.8(8) 70 2.7(7) 4.8(5)
. 20 7.0(8) 75 1.3(7) 1.0(6)
25 1.75(9) 80 6.2(6) 2.0(6)
30 2.1(9) 85 4.3(6) 4.3(6)
35 1.75(9) 90 8.2(6) 8.2(6)
40 1.25(9) 95 1.9(7) 1.9(7) ;
45 8.5(8) v 100 3.4(7) 3.4(7)
50 5.1(8) 1.0
] B(100) = 0 and A(100,F) = A0 , (10)
we can now find that AO is given by
Ao = Sln[NO]]_OO,L = SLn[NO]lOO’i - [Y - Cc1o0)Jen[G(L)]. (11)

Note that Ao is essentially independent of latitude, since
[1 - ¢c(100)] ~ 0.002; this is a reason for not using the notation
A(z,L,F).

.,
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SECTION 12

A DENSITY PROFILE FOR NITROGEN ATOMS

12-1 INTRODUCTION

The density profile for nitrogen atoms previously given
EMy—75] is herein revised, based on additional significant experimental
measurements, generally above 150-km altitude [DA-77, EM-77a, Ge-75,
ME-75, ME-76a, ME-76b, RS-75b, RS-76d, TB-76a, TT-75, TT-76a]. All but
one, DA-77, are based on satellite measurements and cover the range
from 100-to 500-km altitudes. These measurements demonstrate the
effects of diurnal, seasonal, latitudinal, and geomagnetic activity
variations on nitrogen atom densities. However, the data are selec-
tive in terms of seasonal, geographical, and solar flux variations;
with respect to the latter, the recent data apply to the minimum in the
solar cycle. The analysis of these data is still in progress and the
revised model given below is thus interim in nature.

Two new model calculations have been reported [EM-77, SO-76;
also see 0J-75]. One of these [EM-77] applies to an altitude of 375
km and accounts for geomagnetic and solar activity, latitudinal
effects, both symmetrical and asymmetrical semiannual and annual varia-

tions, and diurnal, semidiurnal, and terdiurnal variations.

The profile presented below includes diurnal, seasonal,
latitudinal, and solar flux variations with added structure to account
for an altitudinal variation of the diurnal component and a diurnal

variation of the latitudinal component.

12-2 NITROGEN ATOM DENSITY PROFILE

The nitrogen atom densities are represented by an empirical
formula which is constructed by first considering the diurnal, seasonal,
latitudinal, and solar flux variations, in turn, and then by adjusting
the model as required after comparing predictions and observations.

The objective was to be able to predict nitrogen atom densities with-
in a factor of two of the presently available data. The dependencies
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included in the empirical formulation are those which have variations
equal to or larger than a factor of two and for which some observa-
tional data are available.

The formula deduced for (both ground and excited-state)

nitrogen atom densities may be written as follows:

[N] = [N(z,t,L,F)]
Tl(z)Tz(L,t)exp[TB(f) + T4(t,z,L)]T5(F) (L)
where

z = altitude, km
t = local apparent time, decimal hours
L = absolute value of the latitude, degrees
f = fractional season-year, being 0 on 1 January

in northern hemisphere and on 1 July in

southern hemisphere
F = solar decimetric (10.7-cm) flux, 10722 y 2 Hz-l,

Latitudinal symmetry has been assumed for simplicity, an assumption

which is accurate only during particular seasons [EM-77].

The basic component, Tl(z), obtaining for t = 9.4 hr, L = 50°,
f =0.25 yr, and F X 50, is specified in Table 12-1 and shown in Figure
12-1,

The latitudinal factor with its diurnal variation, T2(L,t),
is given by

5

. 141 2.87
T,(L,t) = [0.6 +{0.56+ 0.44 sin (2%‘336) 2v]}1+eo.o7(|L|-24)J

(2)

The diurnal maximum and minimum extents of TZ’ i.e., TZ(L,lS.A) and
TZ(L,3.4), respectively, are plotted in Figure 12-2. The total lati-

tudinal variations for the diurnal maximum and minimum are

T2(0,15.4)/T2(90,15.4) 2.2

1.2

T2(0,3.4)/T2(90,3.4)
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Table 12-1. Basic component of nitrogen atom profile.a

s M W W

cm km cm km cm
<100 b 120 1.26(7) 145 3.30(7) E
100 1.33(6) 125 L.74(7) 150 3.35(7)
105 2.90(6) 130 2.26(7) 155 3.31(7)
110 5.20(6) 135 2.82(7) 160 3.20(7) d
115 8.60(6) 140 3.14(7) >160 c

8 Obtains for t=9.4 hr, L=50°, £=0.25 yr, F ~ 50.
b Tl(Z)

¢ Tl(Z)

[N(100) Jexp[-0.144(100-2)], 0 < z < 100.

[N(160) Jexp[-0.0178(z-160)], z > 160.

The seasonal factor is exp[TS(f)], with T3(f) given by
T3(f) = 0.693 sin[ (£-0.25)2~w] . (3)

The seasonal factor is a maximum at f = 0.5 and is smaller by a
factor of 4.0 at its minimum. The selection of this factor is based
on ME-76b.

The principal diurnal factor, with its altitudinal and
latitudinal variations, is exp[TA(t,z,L)], with TA(t,z,L) given by

1.42 sin[(%% - %%%)ZHJ
{1 + exp[0.146(L-75)]}{1 + exp[-0.02(2-220)]}

(4)

Ta(t,z,L)

*

The adequacy of the functional form A exp[(B/CD)sin x] to represent
the diurnal variation according to (selected) experimental data is
illustrated in Figure 12-3 where this functional form is plotted with

the parameters having the following values:
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Figure 12-1. Basic component of nitrogen atom profile
(for t=9.4 Er, L=30°, {=0.25 yr,
F 5 50x10722 W m~¢ Hz-l).
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B = 1.42

C = 1.013 (corresponding to L = 45°)

D = 1.027 (corresponding to z = 400 km)
B/(CD) = 1.365

A 3.72 x 105 (selected to optimize fit)

The diurnal variation depends on the altitude and latitude.
The altitude variation of the total diurnal variation is shown in
Figure 12-4 where the ordinate is the ratio of diurnal factors for
diurnal maximum and diurnal minimum,

exp[T4(15.4,z,50)]
expLT4(3}4,z,40)] ’

i,e., L = 50° latitude, t is 15.4 and 3.4 for diurnal maximum and
minimum. The altitude dependence of the diurnal variation shown in
Figure 12-4 is based on an analysis of the data presented in EM-77a
with consideration of the variations and differences in variations in
ME-76a and 0J-75.

The diurnal variation decreases poleward [EM-77] and the
latitude~dependent factor in Equation (4) takes this into account.
Thus the variation at L = 90° is 0.1 of that at L = 50°,

The solar-flux factor, TS(F)’ is given by

TS(F) = 1+ 3 : (5)
1 + exp[-0.1(F-132)]

TS(F)’ representing the effect of the solar flux on the nitrogen atom
density, is a very crude estimate. The nitrogen atom density is
expected [EM-77] to increase with increasing solar flux. However,
data on the effect are lacking. The recent measurements [DA-77, EM-
77a, Ge-75, ME-75, RS-75b, RS-76d, TT-75, TT-76a] were obtained under
solar cycle minimum conditions for which the flux I-‘(lO'22 W m'2 Hz'l)
ranges between 80 and 100. Only two data sets considered below [GH-
68a, OP-72] are for significantly larger solar fluxes. It was on the
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basis of these measurements that the magnitude of the factor Tg in
Equation (5) was based. Note should be taken of the possibility of

experimental error [OP-72, ME-75] in these two measurements [GH-68a,
orP-72].

12-3 COMPARISON OF MODEL PROFILE DENSITIES AND OBSERVATIONS

The predictions of Equation (1) are compared with the
observed nitrogen atom densities in Table 12-2 and in Figure 12-5.
The errors given in Table 12-2 are generally within a factor of two
of the observed data. The principal exception occurs in comparison
of calculations with the data of Ge-75. These data are not in agree-
ment with the datum given in TT-76a for 160 km and L N o40° (this
datum is also that in RS-76d and is the correction of the value given
previously in RS-75b). For the two reports [TT-76a, Ge-75], the f-
values are similar but the observation time is about 13 hr in TT-76a
(RS-76d) and about 18 hr in Ge-75; yet, the reported nitrogen atom
density is the same. It is quite certain that the density for condi-
tions of Ge-75 (i.e., 18 hr) should be lower than that for conditions
of TT-76a (RS-76d) (i.e., ~13 hr). Also note that the altitude
dependence of the nitrogen atom density is essentially the same for
the calculations and measurements [Ge-75] above 190 km.




§ Te e A N dradt b ol A Iy, 3
I - - siviblone.. i N e 2 E g
™ome . - Lt A T Y
' ‘
- i
!

Table 12-2., Comparison of calculated and observed nitrogen
atom densities.

[N], cm-3
z L t a b Error
km Degrees Hours £ F Calc. Observed Percent Ref.
200 47.0 11.73 0.372 79 3.53(7) 3.21(7) 10.0 EM-77a
200 40.0 9.13 0.405 85 2.71(7) 3.09(7) -12.3
200 31.5 6.25 0.441 94 1.94(7) 1.51(7) 28.5
240 42.5 11.44 0.372 79 2.02(7) 2.21(7) - 8.6
240 35.2 8.56 0.405 85 1.18(7) 1.37(7) -13.9
240 26.3 6.05 0.441 94 7.70(6) 6.72(6) 14,6
300 36.9 11.16 0.372 79 8.12(6) 8.58(6) - 5.4
300 29.2 8.69 0.405 85 4.18(6) 4.58(6) - 8.7
300 20.1 5.87 0.441 94 2.04(6) 1.61(6) 26.7
400 29.8 10.86 0.372 79 1.47(6) 1.85(6) -20.5 \
400 21.6 8.44 0.405 85 6.58(5) 7.00(5) - 6.0
400 12.0 5.62 0.441 94 2.83(5) 2.59(5) 9.3 EM-77a
140 32 18.75 0.0876 75 2.48(7) 1.90(7) 30.5 FT-74
225 ~13 ~0.0 0.548 79 1.33(7) 0.56(7) 137 to DA-77
to 1.1(7) 20.9
160.5 38.9 12.89 0.1068 81 2.77(7) 4.60(7) -39.8 TT-76a
200.4 28.8 13.3 0.1068 81 1.97(7) 2.75(7) -28.4
246.7 22.7 13.51 0.1068 81 1.26(7) 1.30(7) - 3.1
308.9 16.6 13.69 0.1068 81 6.09(6) 5.20(6) 17.1
333.1 14.6 13.75 0.1068 81 4.35(6) 3.50(6) 24.3
386.1 10.6 13.86 0.1068 81 1.92(6) 1.60(6) 20.0
414.9 8.6 13.92 0.1068 81 1.20(¢6) 9.8 (5) 22.4 TT-76a
150 39 4.75 0.104 137 3.59(7) 2.80(7) 28.2 oP-72°¢
100 40 ~18.3 0.959 82 8.35(5) 2.72(5) 207 Ge-75
150 40 v18.3 0.959 82 2.37(7) 2.32(7) 2.2
200 40 ©18.3 0.959 82 1.37(7) 8.76(7) -84.¢4
300 40 %18.3 0.959 82 3.58(6) 2.03(7) -76.4  Ge-75
165 32 5.95 0.6023 140 1.08(8) 1.82(8)d -40.6 GH-68a
184 32 5.95 0.6023 140 7.04(7) 1.24(8) -43.2 GH-68a
213 32 5.95 0.6023 140 3.60(7) 4.40(7) -18.2 GH-68a
137 32 14.0 0.0876 75 2.59(7) 2.0 (7) 29.5 SO-76g
. 177 32 14.0 0.0876 75 2.49(7) 2.0 (7) 24,5 SO—76e
199 32 14.0 0.0876 75 1.92(7) 1.5 (7) 28.0 S0-76
8Fractional season-year,
bThe solar flux values, in units of 10'22W m=2 Hz'l, were obtained from

among (a) the cited references, (b) the Geomagnetic and Solar Data
sheet appearing at the end of issues of J. Geophys. Res., and (c) "Solar
Geomagnetic Data,' IER-FB-277, 5, Sept. 1967 (for the case of GH-68a).

®The measurements are regarded as quite uncertain.
d

A28

Average of measurements at 164 and 166 km.

€Calculations included conditions appropriate to experiment of FT-74;
these data used to help establish the basic component, Tj(z) of [N] for
100 < z(km) < 160 as given in Table 12-1.

101




0“

nitrogen atom densities.

' lOB.S;ERVATIONAL DA{TA
RIGHT—HAND SCALE LEFT—HAND
O EM-77a Orbit O TT-76a
0O EM-77a Orbit QO Ge-75
® O\ O EM-77a Orbit
o > A FT-74 INSERT
A ~N
AN g\ > DA-77 ¥ GH—68a
A <.> \\ N O OP-72
A =N CALCULATIONAL DATA
N, B8 AN
108 = \ N Shown as solid symbols but ~ —]
/0\ \8 \ O\ otherwise above legend applies
\ N N
o / AN \Q AN
>/\ N N\ \\
o ~ AN
¢ A N N\ AN
/ o \<> \ o)
? ] ¢ % N " °
3 AN
S 07 I / N N\ \ _
—_ AN
z f \ N\ .
j 8 \\
L J
/ ¢ \o AN
AN \8
/ ' AN
RN S
AN
i / g * ‘ﬁ'\ @
108 | 108 - 0
'S \
/ "
\
) ¢
/ %
d
105 107 1L l 1
100 200 300 400
ALTITUDE, km
Figure 12-5. Comparison of calculated and observed

107

105




SECTION 13

A DENSITY PROFILE FOR N(ZD) ATOMS

13-1 INTRODUCTION

There are no direct measurements of the N(ZD) atom density in
the atmosphere. However, there are recent values derived from measure-
ments of the SZOOZ.dayglow [RS-75b, RS-76d]. These values are used as
a basis for determining the N(2D) profile between 160- and 290-km alti-
tude. At other altitudes the profile is extrapolated by using, as a
guide, the profile for nitrogen atoms in Figure 12-1.

The effects of seasonal, latitudinal, and solar- and geo-
magnetic-activity variations on the density of N(ZD) have not been
observed. In the present model, these effects are treated as in the
nitrogen atom model of Section 12 except for the diurnal variation.
Since the N(2D) density decreases to very low values during nighttime,
the model of Section 12 is augmented by a diurnal variation factor.

13-2 N(%D) PROFILE

The N(2D) densities are calculated from the expression

[N(%D) ]

[NZD(Z)t,L;f,F)]

[N(z,t,L,£,F)]
T (2)

T,(2)Tg(t) 1)

where [N(z,t,L,f,F)] is the total nitrogen atom density given by
Equation (1) of Section 12 and Tl(z) is specified in Table 12-1. All
the arguments are defined in Section 12.

The basic component for N(2D), T7(z), obtaining for t = 9.4
hr, L = 50°, £ = 0.25 yr, and F 5 50, is specified in Table 13-1 and
shown in Figure 13-1.

The diurnal factor for N(2D) is given by
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% and is shown in Figure 13-2.

.

T8(t) = {1 + exp[-2.197(t-6)]1}

-1

{1 + exp[2.197(t-18)]} 1 (2)

Table 13-1. Basic component of N(ZD) profile.a

!

F z [N(2D)] [N(2D)] [N(“D))

P' _ km em™3 km em” 3 km em™3

b

; <125 b 150 3.1(5) 180  6.5(5)
125 1.3(4) 155 4.6(5) 185  6.4(5)

: 130 3.0(4) 160 5.5(5) 190 6.3(5)
135 6.3(4) 165 6.0(5) 195  6.1(5)
140 1.2(5) 170 6.4(5) 200 5.7(5)
145 2.0(5) 175 6.5(5) 5200 c
& Obtains for t=9.4 hr, L=50°, £=0.25 yr, F ~ 50.

; P 7(2) = [Nyp(125)]exp[-0.184(125-2)], 0 < z < 125.

; © T,(2) = [N,p(200)Jexp[-0.0282(2-200)], z > 200.

?

E

} L]

»

?

b

4




IN(2D)],cm™3

103

] 1
50 100 200 300 400
ALTITUDE, km

10!

R

Figure 13-1. Basic component of N(2D) profile (for t=?.4 hr,
L=50°, £=0.25 yr, F < 50x10-22 W m~2 Hz-1).
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